
Implementing Function Block Adapters

Torsten Heverhagen, Rudolf Tracht
University of Essen, Germany

FB 12, Automation and Control
Torsten.Heverhagen@uni-essen.de, Rudolf.Tracht@uni-essen.de

Abstract: Function Block Adapters (FBAs) are new modeling elements, responsible
for the connection of UML capsules and function blocks of the IEC 61131-3 standard.
FBAs contain an interface to capsules as well as to function blocks and a description
of the mapping between these interfaces. In this paper we discuss implementation
issues of FBAs. While the specification of FBAs is completely platform-independent,
we show that different hardware solutions force highly platform-dependent
implementation models. In most cases a FBA is implemented in two programming
languages - an object oriented language and a language out of IEC 61131-3. While
object oriented programs mostly implement an event-driven execution semantic, PLC
programs are executed cyclically. Especially this heterogeneous implementation
environment was the motivation for developing Function Block Adapters.

1. Introduction and Motivation

Programmable Logic Controllers (PLCs) are widely used for controlling industrial
manufacturing systems. The programming of PLCs is normally done in special languages
defined in the IEC 61131-3 standard [2]. The increasing complexity of the controlling
software for manufacturing systems leads to the need for more powerful specification
languages. Latest developments in object oriented technology like UML-RT (successor of
ROOM [4]) face this need [1]. But in most cases it is not possible to substitute PLCs in
existing plants completely with object oriented systems. Therefore, our approach is to
integrate object oriented technology (UML-RT) into an existing PLC-environment in the
case of extending a manufacturing system with new components without throwing away
the PLC. New components can be for example an Industrial Personal Computer (IPC)
which is connected over a fieldbus system to the PLC. We assume, that the IPC program
is then designed with UML-RT.
In [5], [7] we introduced a new UML stereotype, the Function Block Adapter (FBA),
which is responsible for the connection of UML-RT capsules and function blocks of the
IEC 61131-3 standard. FBAs contain an interface to capsules as well as to function blocks
and a description of the mapping between these interfaces. For this description a special
FBA-language is provided. The FBA-language is easy to understand both to UML-RT
and to IEC 61131-3 developers, so they can unambiguously express the interface
mapping. An important advantage of the FBA-language is the possibility to use it at an
early design state of the UML-RT system.
In this paper we discuss implementation issues of FBAs. We show that different hardware
solutions force highly hardware-dependent implementation models. In most cases a FBA

is implemented in two programming languages – an object oriented and an IEC 61131-3
programming language. While object oriented programs mostly implement an event-
driven execution semantic, PLC programs are executed cyclically. A closer look into
cyclic program execution is given in section 2.2. Especially this heterogeneous
implementation environment was the motivation for developing Function Block Adapters.
First some example requirements are given in section 2. Section 0 gives a short
introduction into Function Block Adapters by an example based on section 2. In section 4
two possible hardware solutions are discussed in principle. As an intermediate step
towards implementation section 5 introduces an abstract execution model the example
FBA. A hardware solution with a fieldbus of type Profibus-DP and a PLC of type S7-300
is discussed in section 6. Section 7 closes this paper with a summary and outlook.

2. Example Requirements

Assuming that there is a PLC on which runs a
function block called MyFB like shown in Figure
2. It contains three input and three output
variables. The Boolean variables B, C, E, and F
are used to provide trigger-events to and from the
function block. The data given in A is interpreted
by MyFB depending on the value of B. MyFB
only provides valid data in D, when E is true.
Section 2.2 discusses this protocol in more detail.

Furthermore we assume that there is a new application being developed which is designed
in UML-RT. This application contains a capsule called MyCapsule like shown in Figure
1. MyCapsule has to send and receive the signals of protocol MyProtocol to and from the
function block MyFB. This protocol is implemented in port1. The mapping from port1 to
the interface of MyFB will be explained in section 0.

2.1 The Protocol MyProtocol

Figure 3 describes the protocol by a statechart. Initially the protocol is in state
Sig1_or_sig2 if no signal is being transmitted. Transmission of sig1 is expressed by a
transition from state Sig1_or_sig2 to state Sig1_or_sig2. After sending of sig2 the
protocol is in state Wait_for_sig3. In this state only sig3 is being able to sent.
State Sig1_or_sig2 is left by two transitions. If the signals for both transitions arrive at the
same time only one transition fires. The selection algorithm is priority-based. In this
example the priority of sig1 is higher than the priority of sig2.

MyCapsule

port1

MyProtocol

sig2(int)

sig1(MyData)

MyData

attr1: int
attr2: int

<<port>>

port1 sig3

Figure 1. Capsule interface

MyFB

A

B

C

D

E

F

INT

BOOL

BOOL

INT

BOOL

BOOL

Figure 2. FB interface

Sig1_or_sig2

sig1

Wait_for_sig3

sig2

sig3

Figure 3. Protocol state machine for MyProtocol

2.2 The Protocol of Function Block MyFB

The execution semantic of function blocks is different
from the one of capsules. Normally they are executed
cyclically. Figure 4 illustrates how program elements are
executed within a PLC. After initialization a cycle is
started which consists of reading of PLC inputs, program
execution, and updating of PLC outputs. The cycle time is
mainly determined by the program execution time.
Programming languages of IEC 61131-3 contain no
statements like waiting for events. If a PLC-programmer
implements a waiting or endless loop, the PLC operating
system recognizes the loop and refuses the execution. This
behavior forces a PLC programmer to a special kind of
programming style like explained in section 6.
Instead of having in mind the cyclic execution of MyFB it
is easier to describe its behavior by a timing diagram
given in Figure 5. The timing diagram is divided into three
sections by dashed lines. The first section shows how
MyFB reads sequentially two values from A. In this paper
we call this FB-Signal B, because B triggers MyFB to read
a value from A. With a raising edge in F MyFB
acknowledges that A was read. This shall correspond to

Initialization

Reading of
PLC inputs

Program execution (i.e.
functions and function
block instances)

Updating of
PLC outputs

Figure 4

A

B

F

D

E

C

time

sig1 sig2 sig3 sig1

Figure 5

sig1 of MyProtocol. The second section describes how MyFB provides some data given
in D for another function block. We call this FB-Signal E, because E is the trigger-
variable for other function blocks to read a value from D. MyFB awaits a raising edge in
C to get an acknowledgement. This shall correspond to the combination of sig2 and sig3
of MyProtocol. Section three of Figure 5 shows that FB-Signal B has higher priority than
FB-Signal E. FB-Signal B can interrupt FB-Signal E only until the raising edge of C is
being reached.

3. Function Block Adapters

Figure 6 shows a possible interaction between an instance of MyCapsule called
capsuleInst and an instance of MyFB called myFBInst. At first the signal called sig1 is
sent from capsuleInst to myFBInst. Sig1 contains an instance of the data class MyData:
myData.attr1 = 4711; myData.attr2 = 4712.
Of course the function block MyFB cannot receive the UML-Signal without a translation
into a FB-Signal. The legend which is attached to sig1 in Figure 6 shows the assignments
of the function block variables, which are needed to give the information of UML-Signal
sig1 into the function block MyFB. MyFB reads the values of attr1 and attr2 as a
sequence in the input variable A. Input variable B is used to signal MyFB that valid data is
assigned to variable A. With the output variable F MyFB acknowledges the inputs of
variables A and B.
The second signal sig2 is sent synchronous. This means that the sender (myFBinst) waits
for an acknowledgement (sig3). Graphically an asynchronous message is displayed by a
single sided arrow and a synchronous message by a double sided arrow. The answer to a
synchronous message is denoted by a dashed arrow.
The data of sig2 is given in the output variable D of MyFB. With output variable E MyFB
tells that the content of D is valid. In input variable C MyFB awaits the acknowledgement.

capsuleInst
/myCapsule:
MyCapsule

myFBinst
/myFB:
MyFB

sig1(myData)

sig2(4713)

sig3

4711 4712A

B

F

4713D

E

C

Figure 6. Example interaction

The translation of the timing diagrams into UML-signals is done within Function Block
Adapters. Sections 3.1 and 3.2 explain the structure and the behavior of the FBA called
MyFBA.

3.1 Structure

A FBA is a stereotype of a UML class which contains
all properties of a capsule. A FBA uses ports to
establish connections to other capsules.
Additionally FBAs define interface variables for the
communication with function blocks. A FBA can
graphically displayed in an extended structure diagram
(Figure 8). The FBA MyFBA contains a port port1~
which is connected to port1 of MyCapsule. Interface
variables of MyFB which are input variables like A, B,
and C are output variables of MyFBA. Interface
variables of MyFB which are output variables like D, E,
and F are input variables of MyFBA.
The class symbol of MyFBA is given in Figure 7. The
declaration of the interface variables has the same
syntax like in IEC 61131-3 for function blocks. Ports are displayed like ports of normal
capsules. Connections to other capsules or function blocks are only shown in the extended
structure diagram.
The second list compartment of Figure 7 shows two operations of MyFBA. These
operations are investigated in the next section. Keyword raises maps corresponding
UML-Signals to FB-Signals and vice versa. This mapping is used by the priority-based
selection algorithm for conflicting transitions (section 5).

3.2 Behavior

The behavior of FBAs describe how the translation between the function block interface
and the capsule interface is done. For this a special language is provided – the FBA-
Language.
The FBA-Language defines operations which are called when signals arrive from a port
or from the Function Block. We distinguish between operations for the translation from
UML-Signals to Function-Block-Signals (FB-Signals) and operations for the translation
from FB-Signals to UML-Signals.

MyFBA

port1~

VAR_IN
 D: INT;
 E, F: BOOL;
END_VAR
VAR_OUT
 A: INT;
 B, C: BOOL;
END_VAR

port1.sig1 raises FBSignal(B);
FBSignal(E) raises port1.sig2;

Figure 7. Class symbol for MyFBA

MyFB

A

B

C

D

E

F

myFBinst

/myFBA:
MyFBA

A

B

C

D

E

F

port1

/myCapsule:
MyCapsule

port1 port1

Figure 8. Extended structure diagram for MyFBA

In operations of the first category two functions are needed. Delay(time) is a function that
delays the execution of following commands for the time given as a parameter.
WaitFor(bool, time) is a function that delays the execution of following commands until
the Boolean expression given as first parameter evaluates from false to true. The second
parameter is a timeout, which assures that the FBA is not able to hang up. Additionally to
these two functions we only need assignments. In assignments access to properties of the
FBA class and used data classes is possible. Properties of UML classes are Attributes,
Operations, and AssociationEnds. An example operation for the translation of the UML-
Signal sig1 to the FB-Signal B is given in Figure 9.

Next we show an operation of the second category for the translation of FB-Signals into
UML-Signals. For operations like this additional functions SendSync(send_signal,
receive_signal, timeout) and SendAsync(send_signal) are needed, which send
asynchronous or synchronous messages through ports of the FBA. Furthermore
declarations of instances of signals are added which are used in calls of the functions
SendSync and SendAsync. SendAsync sends an asynchronous message send_signal. This
asynchronous sending of signal send_signal takes no time. If SendSync is used instead
and receive_signal is given as an incoming signal and a timeout is set, the function at first

ON_UMLSignal (s1: port1.sig1)
BEGIN
 A := s1.attr1;
 B := true;
 WaitFor(F, T#1s);
 B := false;
 A := 0;
 WaitFor(F = false, T#1s);
 A := s1.attr2;
 B := true;
 WaitFor(F, T#1s);
 B := false;
 A := 0;
 WaitFor(F = false, T#1s);
ON_Exception
 B := false;
END_ON_UMLSignal

Figure 9. Translation operation for sig1

ON_FBSignal(E)
SIGNALS
 s2: port1.sig2;
 s3: port1.sig3;
BEGIN
 s2 := D;
 SendSync (s2, s3, T#1s);
 C := true;
 waitFor (E=false, T#1s);
 C := false;
ON_Exception
 C := false;
END_ON_FBSignal

Figure 10. Translation operation for FB-Signal E

sends send_signal and then waits for receive_signal. An example of an operation of the
second category is given in Figure 10.
The two operations explained above are typical examples for translation operations of
FBAs. All operations consist in their body of the following elements:
• assignments to variables of the associated Function Block
• access to properties of data classes of signals
• calls of the functions

- Delay(time)
- WaitFor(bool_expression, timeout)
- SendAsync(send_signal)
- SendSync(send_signal, receive_signal, timeout)

The main purpose of the FBA-Language is to give developers of both UML-RT and IEC
61131-3 a common language for the specification of adapters between components of
their models. The FBA-Language is not designed to specify behavior of Function Blocks
or of capsules. This means that a FBA does not specify what happens after a signal is
translated and sent to a capsule or to a Function Block. This is the reason why we left
control structures like IF THEN ELSE and loops out of the FBA-Language. If an UML-
Signal is such complex that the FBA-Language is not sufficient for the translation to FB-
Signals, we prefer to redesign the UML-RT interface instead of extending the language.
The reason for this is, that the UML-RT system is applied to an existing system. The
UML-RT developer should try to keep his design as conform as possible to the design of
the existing system.

4. Hardware Solutions

When implementing a FBA the following points have to be considered:
a) How are the Function Block variables synchronized with the FBA variables?
b) How are the translation operations of FBAs invoked?

The problem here is the invocation of the translation operations of FB-Signal. UML-
Signals are triggers for transition of FBAs. To this transitions the necessary
operations for the translation of UML-Signals can be added.

c) How are the functions Delay, WaitFor, SendAsync, and SendSync implemented?
Answers to this questions depend very on the hardware connecting the PLC and the IPC.
There is no standard way of connecting a PLC and an IPC. Some general examples of
doing this are the following:

4.1 Hardware solution 1

If the PLC interface is very simple, then digital inputs and outputs are sufficient. In most
cases the IPC must be extended with a digital I/O card. In this solution the FBA is

PLC

existing
IEC 61131-3
Function Block

IPC

UML-RT system

the complete FBA

Figure 11. Hardware solution 1: The FBA is only at the IPC

implemented completely at the IPC.
About a) How are the Function Block variables synchronized with the FBA variables?
The Function Bock variables can be read and written with the digital I/O card. This can be
done by polling or by interrupt techniques.
About b) How are the translation operations of FBAs invoked?
Every time a polling function or an interrupt function was invoked, the Boolean
expressions of the FB-Signals must be evaluated. If a FB-Signal becomes true, the
associated translation operation is invoked.
About c) How are the functions Delay, WaitFor, SendAsync, and SendSync implemented?
All functions are implemented and used in the same programming language and
environment within the IPC. Delay and WaitFor could become wait states of a statechart,
which are left after a timeout signal of a timer or after the value of a variable has been
changed. SendAsync and SendSync are functions normally provided by the realtime
service library of a UML-RT tool.

4.2 Hardware solution 2

A second typical and more important way of connecting a PLC to an IPC is if the PLC
uses serial communication over an industrial fieldbus or simply a serial interface like for
example RS232 to communicate with an IPC. The IPC uses its existing serial interface or
must be extended with a fieldbus interface. The implementation of the FBA then consists
of two parts. One part resides at the IPC and the other part at the PLC. Between the two
parts a communication protocol must be established within the FBA.

Figure 12. Hardware solution 2: The FBA is distributed over PLC and IPC

About a) How are the Function Block variables synchronized with the FBA variables?
For the communication between the PLC and the IPC a special FBA-internal protocol
must be developed. Depending on this protocol every changed value of a FB-variable can
be sent to the IPC or only meaningful trigger-events. (See also section 5)
About b) How are the translation operations of FBAs invoked?
The part of the FBA which is implemented in the PLC is executed in every cycle of the
PLC. Each cycle the Boolean expressions of the FB-Signals are evaluated. If a signal
becomes true, a message containing all necessary information is sent to the IPC.
Also every cycle the FBA part of the PLC must check if the FBA part of the IPC wishes
to send a message.
About c) How are the functions Delay, WaitFor, SendAsync, and SendSync implemented?
Delay and WaitFor are implemented completely at the PLC part of the FBA in IEC
61131-3 languages. SendAsync and SendSync are implemented in the IPC part of the
FBA. (See also section 6.3)

PLC

existing
IEC 61131-3
Function Block

PLC part
of the
FBA

IPC

UML-RT system UML-RT
part of the
FBA

serial communication

5. An Execution Model for MyFBA

In this section we explain execution behavior of MyFBA. This behavior is a result of a
complete FBA-specification given in section 0. It describes when and under which
conditions a FBA-operation is processed and in which operational states the FBA may
reside. The statechart of Figure 13 shows different abstract states of operation for MyFBA.
The states are abstract because they must be refined in different ways, depending on the
hardware solution (see also section 4). This statechart is an implementation view of the
FBA. It doesn’t belong to the FBA-Language.

The triggers t1 to t12 of Figure 13 are defined in Table 1. MyFBA has four inputs which
may generate events. Port1 generates the events sig1 or sig3 on receiving sig1 or sig3.
The input variables D, E and F generate a value-
changed event, when the value of a variable has
been changed. The events of all inputs are always
combined by the logical AND-function. For
example, trigger t1 means that no other event than
sig1 has been occurred. The triggers of transitions
in Figure 13 are logical OR-connected.
The central state of Figure 13 is Idle. If nothing has
to be translated the FBA is in this state. A change-
event of variable D has no effect in this state. The
values of all Boolean variables E, F, B, and C must
be false. A change-event of F or sig3 is a protocol
exception. This results in a state change to
Exception Handling. The standard exception
handling behavior is to raise an exception message
of the operating system. In general, the behavior of
this state should be user-defined.
On t1 or t2 MyFBA switches from Idle to
Processing sig1. In this state the FBA-operation of
Figure 9 is executed. A further sig1 remains in the

Idle Processing sig1Processing
FB-Signal E

t1, t2t9, t11

Sync
t9, t11

t3, t5

Exception
Handling timeout, t3, t5, t7, t9, t11timeout, t2, t4, t6, t8, t10, t12

t4, t6, t7, t10, t12

Figure 13. Execution model of MyFBA

Table 1. Definition of trigger-events

port1 D E F
t1 sig1 - - -
t2 sig1 x - -
t3 sig1 x x -
t4 sig1 x - x
t5 sig1 - x -
t6 sig1 - - x
t7 sig3 - - -
t8 - x - -
t9 - x x -
t10 - x - x
t11 - - x -
t12 - - - x
- means no event.
x means value-changed event.
Events on port1 are named like
associated signals.

input queue of port1 until state Idle is reentered. If a deadline is reached or an unexpected
event occurred, a transition to state Exception Handling fires. In this transition the
statements after ON_Exception of Figure 9 are executed.
On t9 or t11 MyFBA switches from Idle to Processing FB-Signal E. In this state the FBA-
operation of Figure 10 is executed. A sig1 remains in the input queue of port1 until state
Idle is reentered. With this a kind of extended run-to-completion semantic is reached for
the processing states. If a deadline is reached or an unexpected event occurred, a
transition to state Exception Handling fires. In this transition the statements after
ON_Exception of Figure 10 are executed.
When in state Idle at the same time sig1 occurs and E becomes true (t3 and t5), the state
Sync is entered. Within this transition variable B is set to true. According to Figure 5 and
the priority-mapping given by the FBA (Figure 7) Sync is left to Processing sig1 when E
is reset.
When implementing hardware solution 2 (section 4.2) every state of Figure 13 must be
refined with at least two AND-states, because MyFBA contains two concurrent processes.
That’s why a FBA-internal synchronization is necessary before one of the trigger-events
in Table 1 can be recognized. The next section discusses some technical questions about
hardware solution 2 in more detail. Some real time dependent questions, which can be
considered at this abstract implementation stage, are discussed in [6].

6. Example for the Fieldbus Profibus-DP and the PLC S7-300

In this section we discuss the hardware solution of section 4.2 realized by a fieldbus of
type Profibus-DP and a PLC of type S7-315-DP. The communication between the IPC
and the PLC is done over the Profibus-DP. For this the IPC uses a communication
processor (CP) called Profibus-CP 5412. The PLC of type CPU315-DP already contains a
Profibus-CP.
Like mentioned above, the FBA is implemented in two parts – the capsule part resides at
the IPC and the function block part (FB-part) resides at the PLC.

6.1 How are the Function Block variables synchronized with the FBA variables?

Because both the IPC and the PLC are active nodes we need a master-master protocol for
communicating over the Profibus. A suitable fieldbus protocol is the FDL (Field Data
Link) protocol [8].

At the IPC the FDL programming interface is provided by a C library with function calls
like SCP_send and SCP_receive. At the PLC the two functions AG_SEND and AG_RECV
are used for FDL-connections. With the FDL-protocol messages can be received either
asynchronous or synchronous. The configuration, initialization, and parameter setting of
FDL-connections is out of the range of this paper.

(1) void synchronizeAction() {
(2) ...
(3) if(SCP_receive(...))
(4) internalPort.FBSignalE().send();
(5) ...
(6) }

Figure 14. C++ code fragment

As mentioned in section 4.2 the synchronization of the two concurrent processes within
MyFBA is done over an internal protocol. This protocol is on top of the FDL-protocol. In
our example implementation both sides use polling for recognizing messages of the
communication partner. The C++ code fragment in Figure 14 belongs to the capsule-part
of the polling mechanism. It calls the function SCP_receive to check if the function block
part of the FBA wants to send a message with the call of AG_SEND. The FB-part of the
FBA checks (call of function AG_RECV) in every PLC cycle if the capsule part of the
FBA wants to send a message with the call of SCP_send. The next section explains this
aspect again but in more detail.

6.2 How are the translation operations of FBAs invoked?

The translation operations of UML-signals are invoked by the UML-signals itself, after
synchronization with the PLC-part was successful.
The FB-signals at first have to be recognized. Then the data of the FB-signal is
transferred to the capsule part by a FDL-connection. At the capsule part an internal UML-
Signal is generated which triggers the transition which is responsible for the FB-Signal
(section 5). This polling is done within the abstract Idle state of Figure 13.
The recognition of the FB-Signal is done within the FB-part. The key mechanism is the
edge recognition of Boolean expressions. In our example of Figure 10 the Boolean
expression consists only of the variable E. For edge recognition a function block called
R_TRIG is provided in [2]. A code fragment of the FB-part of the FBA written in
Structured Text [2] is given in Figure 15.
For the explanation of Figure 15 we outline the execution behavior of a PLC in Figure 16.
PLC functions are executed in every PLC cycle. At the beginning of a cycle the input

variables are read. Line (6) of Figure 15 evaluates in every cycle, if the value of E has
changed from false to true. This happens in cycle 6 of Figure 16. Only in this cycle the

(1) FUNCTION_BLOCK MyFBA
(2) VAR
(3) my_trig: R_TRIG;
(4) END_VAR
(5) ...
(6) my_trig(E);
(7) IF my_trig.Q THEN
(8) ...
(9) AG_SEND(... D ...);
(10) ...
(11) END_IF
(12) ...
(13) END_FUNCTION_BLOCK

Figure 15. ST code fragment

E

cycle number1 2 3 4 5 6 7 8

Figure 16. Scanning of input variables of function blocks

output variable my_trig.Q is true, which is evaluated in line (7) of Figure 15. Then the
function AG_SEND gives the data of variable D to the Profibus system which sends the
data over a FDL connection to the Profibus-CP of the IPC.
The time for sending of FDL messages can be greater than the cycle time of a PLC.
Furthermore the time interval in which the polling action of the IPC is executed, is in
most cases greater than the cycle time of the PLC. This must be considered when FBAs
are implemented.
During the design of FBAs we don’t need to think about these different cycle times,
because a continuous time model is considered. This is a great advantage of FBAs.

6.3 How are the functions Delay, WaitFor, SendAsync, and SendSync
implemented?

Delay For time delays a special function block called TON is provided in
[2]. (Within the S7-SCL this function block is called S_ODT)

WaitFor The implementation of WaitFor is a combination of R_TRIG and
TON. The timer TON is used to generate the timeout.

SendAsync
and SendSync

Line (4) of Figure 14 is an example implementation of SendAsync
with the use of the Rational Rose C++ Realtime Library. For a
synchronous message the C++ function RTOutSignal::invoke() is
provided.

7. Summary and Future Work

Within this paper we have shown that with Function Block Adapters the integration of
systems designed in UML-RT into an existing PLC environment can be easily specified.
The specification of a Function Block Adapter is completely plattform-independent. It
describes only the "What" should be done for the integration and not the "How". This
aspect is very important because the "How" is highly plattform-dependent.
An approach related to our FBA-Language is proposed in the Statemate Approach [3]. In
Statemate reactive mini-specs are used to specify data-driven activities. Data-driven
activities are continuously (cyclic) executed, which is expressed with TICKs in a mini-
spec. Conditions are evaluated in IF THEN ELSE statements. In our approach FBA-
operations are only executed on associated signal events, which is a different semantic
than data-driven activities have. For this reason we introduced the notion of a FB-Signal.
Conditions on data-values are evaluated with the WaitFor function. The decision if
conditions are computed continuously or interrupt-driven is left to the implementation.
Whereas data-driven activities are suitable for raw sensor data the FBA-Language is
easier to use with IEC 61131-3 Function Blocks. We assume that raw sensor data is
computed within a Function Block.
With a specification given in the FBA-Language a developer has an unambiguous
description of the requirements for connecting the UML-RT system to the PLC. Because
of the simplicity of the FBA-Language both UML-RT developers and IEC 61131-3
developers can understand and validate the specification.
Currently, we are interested in the development of an implementation framework for
Function Block Adapters. This framework contains
• an integration process,
• class and Function Block libraries,

• design patterns,
• a FBA-Language parser and compiler,
• a simulation environment for validation purposes,
• a modelchecker for verification purposes.

Furthermore we plan to adapt Function Block Adapters to IEC 61499. Function Blocks
defined in IEC 61499 distinguish between event input and output signals and data input
and output signals. These separation would ease our definition of FB-Signals.

8. References

[1] B. Selic and J. Rumbaugh: Using UML for Complex Real-Time System, 1998,
http://www.rational.com/products/rosert/whitepapers.jsp

[2] Programmable controllers - Part 3: Programming languages (IEC 61131-3: 1993)
[3] D. Harel and M. Politi: Modeling Reactive Systems with Statecharts, McGraw-

Hill, New York 1998
[4] B. Selic, G. Gullekson, P.T. Ward: Real-Time Object-Oriented Modeling. Wiley,

New York, 1994
[5] T. Heverhagen, R. Tracht, Integrating UML-RealTime and IEC 61131-3 with

Function Block Adapters, Proc. IEEE Int. Symp. on Object Orient. Realtime
Computing (ISORC2001), May 2-4, 2001, IEEE Computer Society. pages 395-402

[6] T. Heverhagen, R. Tracht, Echtzeitanforderungen bei der Integration von
Funktionsbausteinen und UML Capsules, PEARL 2001, Echtzeitkommunikation
und Ethernet/Internet (P.Holleczek, B.Vogel-Heuser (Hrsg.)), Informatik aktuell,
Springer-Verlag 2001, S. 87-96, in german

[7] T. Heverhagen, R. Tracht, Using Stereotypes of the Unified Modeling Language in
Mechatronic Systems, Proc. of the 1. International Conference on Information
Technology in Mechatronics, ITM’01, October 1-3, 2001, Istanbul, UNESCO
Chair on Mechatronics, Bogazici University, Istanbul, Turkey, pages 333-338

[8] SIEMENS, SIMATIC NET Software NCM S7 for PROFIBUS, Users Guide

